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Large-eddy simulation of a passive scalar in 
isotropic turbulence 

By M. ANTONOPOULOS-DOMIS 
Department of Nuclear Engineering, Queen Mary College, Mile End Road, London El  4NS 

(Rcceivcd 18 December 1979) 

TEMTY, a code for large-eddy simulation of a passive scalar in isotropic turbulence, 
is developed and proved by successful simulation of experiment. The role of each term 
in the scalar equation and the concept of prefiltering the scalar equation is examined. 
The ratio of the exponents in the decay of velocity and temperature intensities is 
found to parametrize with the ratio Al,/A,, where A,, A, are the velocity and tempera- 
ture Taylor microscales respectively. 

1. Introduction 
Prediction of the mixing of a scalar in turbulent flows is of great importance. Yet, 

this is still extremely difficult owing to the limited understanding of the evolution of 
the velocity field and also of its coupling to the scalar field. Considerable theoretical 
and experimental research has been devoted to the behaviour of a passive scalar in 
homogeneous isotropic turbulence, but the state of knowledge of its structure and 
transport characteristics is unsatisfactory, even for this simplest case. 

The aim of the present study is to demonstrate the feasibility of large-eddy simula- 
tion (LES) of such fields and use i t  to study the decay of a passive scalar (temperature 
fluctuations) in isotropic turbulence. In  LES the flow-configuration-dependent ‘large 
scales ’ (referred to as resolved scales) are explicitly computed, while the unresolved 
scales (also known as ‘subgrid scales’) which are expected to  be universal (flow- 
configuration independent) are modelled. The theory of LES is discussed by Ferziger 
bz 1,eslie (1979). 

Since experimentation is always the basis confirming or rejecting any theoretical 
approach, the Yeh & Van Atta (1973) experiment is first simulated and the crucial 
parameter of the model determined. Then the concept of ‘prefiltering’ is tested for 
the scalar equations and finally the dependence of the scalar decay rate on the scalar 
and vector length scales is examined. 

I n  what follows u, (i = 1, 2 ,  3) are the fluctuating velocity components and 0 the 
temperature fluctuations, and the summation convention is used, unless otherwise 
stated. The symbol ( c )  indicates the average of the variable c; the average is temporal 
if c, is an experimental value, and is taken over the whole configuration space if c is 
obtained from the simulation. 
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2. Experimental background 
A number of experiments of decaying passive temperature fluctuations in approxi- 

mately isotropic grid-generated turbulence have been carried out during the last 
decade to investigate the transport characteristics of a scalar in turbulence, e.g. 
Lin & Lin (1973), Mills et al. (1958), Sepri (1976), Warhaft & Lumley (1978), Yeh & 
Van Atta (1973). I n  these experiments the amplitude of 0 was kept sufficiently small 
for buoyancy forces to be negligible, so that the temperature fluctuation was acting 
as a passive tracer. At a suecient distance downstream from the grid, the scalar and 
velocity fields, viewed in a co-ordinate frame convected with the mean velocity U,, 
approximate homogeneous isotropic conditions. Measurements were taken a t  a 
number of stations x / M ,  M being the grid spacing, and the kinetic energy was found 
to  decay as 

where n was a constant equal to  1.3 5 0.15 for all experiments. On the other hand, 
although (02) was also found to decay as 

*(u?) - (x/M)-", (2.1) 

different experiments gave values of m ranging from 0.87 to 3.1. In  view of the im- 
portance of the ratio r = m/n in second-order modelling (see, for example, Newman, 
Launder & Lumley, 1980) and the expectation that the velocity time scale should be 
the controlling one, it is important to  explain this variation of m and r. Warhaft & 
Lumley (1978) pointed out that there was an approximate trend for m to increase 
with increasing initial (P). It can be readily shown that, for these experiments, the 
influence of buoyancy is negligible; Warhaft & Lumley (1978) suggested that the 
amount of heat applied to  the grid would influence the scales of the temperature 
fluctuations. They introduced a plane array of uniformly heated fine wires (the 
mandoline) downstream from the turbulence-producing unheated grid and thus 
succeeded in obtaining a control of the temperature scales independent of those of the 
velocity field. They found an almost linear relationship between m and the wave- 
number IC, at  which the temperature spectrum peaked; since Ic,, the wavenumber a t  
which the velocity spectrum peaked, was constant, a linear relationship between m, 
r and ke/lc, might be implied. Herring & Newman (1979) were able to reproduce this 
trend using the test field model. Whilst this experiment provides a significant insight 
into turbulent mixing, a complete understanding of the scalar-vector coupling 
demands similar experiments, in which not only the scalar spectra-scales but also 
those of the velocity are varied. Such an exercise would obviously be costly and time- 
consuming. 

With LES, once the simulation code is proven, one can change the input parameters 
a t  small additional cost; indeed we do so in the present study t o  investigate the 
dependence of m, r on length scales. Our LES code (TEMTY) has been tested by a 
successful simulation of the Yeh & Van Atta (1973) experiment. 
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3. Resolved field equations: subgrid models 
The velocity field is described by the continuity and Navier-Stokes equations 

auilaxi = 0, (3.1) 

where (ui) = 0, p is the kinematic pressure and v the kinematic viscosity. The tem- 
perature field is described by 

where ( 8 )  = 0, vg is the thermal diffusivity and 8 is sufficiently small for buoyancy 
forces to be negligible (whence their absence from (3.2)).  

These equations describe fields which are continuous in both space and time. For 
numerical integration, the differential operators are approximated by finite-difference 
schemes, operating on discrete fields which are defined on a computational grid with 
mesh spacing h. The computation cannot resolve scales smaller than h; in other words 
we are resolving smoothed (‘filtered’) fields, the filtering being imposed by the discrete 
space configuration and the particular numerical scheme used. There have been two 
approaches to the definition of the resolved field. I n  the ‘filter procedure’ of Leonard 
(1974) a new field with filtered variables f is defined by convolution of each variable f 
of the original field with a filter function G(x) 

f(x, t )  = J G(x -x’) f(x’, t )  dx’. 
all space 

Among the filters used are the Gaussian: 

and the top-hat filter: 
G(x) = exp ( - 6x2/A5) 

I l/A% at Ix -xi/ < $AA 

0 otherwise, 

A A  = n h ,  n 2 I ,  

G(x) = 

(3.4) 

where A A  is known as the filter width, andf(x, t )  is defined over all space. The so derived 
prefiltered equations are then approximated by difference equations and the computed 
variables are regarded as those off(x, t )  at  the points of the computational grid. 

With the ‘volume-balance’ procedure of Schumann (1975) the resolvable variables 
f a r e  defined only at  the discrete grid points (xl, x2, x3), as averages over grid volumes 

(3.7) 

Let f‘ be the unresolved part (also known as the subgrid scale term) of the variable f. 
Then after an application of either of the operations (3.4) or (3.7)) which will be 
denoted by an overbar, and subsequent substitution of 

f ’=f-f  (3.8) 
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the new equations read 

(3.10) 

(3.11) 

where the subgrid terms, which must be modelled in terms of the resolved variables, 
are defined by 

R i j =  u ~ u J + U ~ U J + U ~ U ~ ,  (3.12) 
- - -  

- -- 
Roj= uJO’+uJB+UjO’ .  (3.13) 

(3.14) 

(3.15) 

(3.16) 

VC7ith the prefiltering procedure (3.14)-(3.16) are, in general, not true as Leonard 
(1974) pointed out. For the top-hat and Gaussian filters, he has shown that 

The second terms on the riqht-hand sides of (3.17) are known as the Leonard tcrms 
Whilst a(G,ii3)/ax,, a(GU,)/a,r, conserve (?it), (e2)>, respcctively, he predicted that the 
Leonard terms would provide a substantial contribution (more than 3 0  :h) to the 
transfer of (ut), (82) from the resolved to  the subgrid scales, the rest heinq due to 
the subgrid stresses, R,, and Roj. 

Mansour et al. (1979) used a Fourier transform method, instead of the Taylor 
expansion (3.17), to improve accuracy. With their method, 

- 
F ( U i U l )  = P(G)F(?ii7ij), (3.18) 

where F ( y )  denotes the Fourier transform of y. Given the fields Ui,  the right-hand side 
of (3.18) may be computed and Gig3 obtained by inverse Fourier transformation. I n  
both cases the prefiltering procedure is used and the only difference is in the accuracy 
of computation. I n  the present study the expressions (3.17) were used with the 
Leonard terms switchable to ‘on’ or ‘off’ so that the volume balance and the pre- 
filtering procedures could be implemented in the same computer code. We may also 
note that the accuracy of (3.17) is sufficient (O(A:)), as can be clearly seen by com- 
parison of the Kwak, Reynolds & Ferziger (1975) results, who used (3.17),  with those 
of Mansour et al. (1979) who used (3.18) to  simulate the same experiment. We may 
conclude that our findings, concerning the prefiltering procedure, are not restricted 
by the use of (3.17) rather than (3.18).  

- 
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The prefiltering approach has been applied successfully (by Kwak et al. 1975) to 
simulate the near-isotropic velocity field of the Comte-Bellot & Corrsin (1971) experi- 
ment. A centred computational grid was used. It was found that inclusion of the 
Leonard term improved the simulated velocity spectra, but a filter width of AA > h 
was necessary, the optimum being about A,  = 2h. A detailed investigation of the two 
approaches and the relevant issues for the velocity field is given by Antonopoulos- 
Domis (1979). We briefly state here the main findings: 

(a )  On a staggered grid better results are obtained by omitting the Leonard term 
(i.e. using the volume balance procedure). 

( b )  Since the Leonard term is not necessary, scales down to the grid spacing h can 
be resolved. 

( c )  This term does not behave as predicted theoretically (Leonard 1974); on the 
contrary, its main effect is to backscatter energy from the highest resolved wave- 
numbers to smaller ones. 

( d )  Its  contribution to energy transfer to the subgrid scales is negligible; this was 
also found to be the case for a centred grid (Kwak et al. 1975). 

The subgrid scale (SGS) Reynolds stresses R,,, which are responsible for the energy 
drain to the subgrid scales, are represented by an eddy viscosity model, 

R.. 23 = -2v,Sij (3.19) 

and the Smagorinsky (1963) model for the eddy viscosity is used: 

V ,  = ( C ~ A ~ ) ~ ( ~ X , ~ S , , ) * ;  (3.20) 

(3.21) 

The determination of the model parameter c, is discussed in $5. Note that with the 
volume balance procedure A A  = h. The term aR,/ax,, responsible for the drain of 
(@) to the subgrid scales, is here modelled in the same way; specifically 

(3.22) 

where the model parameter c; can be thought of as an eddy Prandtl number. 
We have already seen that the simulated fields are approximations to filtered 

versions of the ‘real fields’ whichever procedure is used. To distinguish between the 
volume balance and the filtering procedure we use the terms ‘filtered’ for variables 
derived with the former and ‘prefiltered’ for variables derived with the latter. The 
equations to be solved numerically now read 

(3.23) 

(3.25) 

where FI,,,, FLa, e(, Fo are flags switching the relevant terms to ‘on’ or ‘off’ 

F L M  104 3 
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FIGURE 1. The staggered grid. 

4. Numerical method 
A staggered grid is used with a cubic mesh of width h (figure 1) .  The components of 

the velocity u are defined a t  the points u,(Z+ i, m, n), u2(l, m + 4, n), uJ1, m, n + 8) 
and the pressure and temperature are defined a t  the points p(Z,m,n), B(Z,m,n). 
Details of the space-differencing schemes for the velocity field are given by Antono- 
poulos-Domis & Love (1978). Here we note that in the fourth-order version of 
TEMTY the terms a(u,uj)/axi and ap/axi are approximated to the fourth order, 
while all other terms are approximated to the second order. 

Having the velocity field up)  a t  time step n, the term HI") (cf. equation (3.24)) is 
computed and the pressure is obtained by solving the Poisson equation 

with fast-Fourier-transform techniques. The term Xp) is then computed. Similarly 
the right-hand side T(n) of (3.25) is obtained from the fields W ,  up). Statistics of the 
fields are computed every NLEAP time steps. On the first time step and every NLEAP 
time step the Euler method of time differencing: 

UP+') = up)+ Atsp)+ O(At2) ,  (4.2) 

@+1) = + + o(At2) (4.3) 

~ p f l )  =  an) + At[a#(n) 2 i  - i#!n-1)] + o(At3),  (4.4) 

@+l) = + At[#T(n) - $T(n-U] + o(At2) (4.5) 

is used. For every other time step the Adams-Bashforth method 

is used. The space-differencing schemes approximating the differential operators of 
(3.25) are as follows. 
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For the homogeneous isotropic turbulence periodic boundary conditions are im- 
posed on the calculational box; and 

8U.O 
d V 3  = 0, s volume of box 

s volume of box 
(4.7) 

The numerical scheme for the convective term has therefore to satisfy the con- 
ditions 

N S  
C 

l ,m ,n= l  Sxj 
-uj(Z, m, n) O ( l ,  m, n )  = 0, 

(4.9) 
N 6 2 ~( l ,m,n) -u j ( l ,m,n)8( l ,m,n)  = 0. 

l , m , n = l  SXi 

Two schemes were used; one was second- and the other fourth-order accurate. The 
temperature and velocity components are not defined a t  the same grid points, and 
the interpolation operators aj, u~,(~) have to be used, where 

UJV, m, n )  = grfv + g, m, n )  +fv - 8, m, 41, 
u1,(3)f(z, m, n, = 8[f(l+ 8, m, 

(4.10) 

(4.11) 

with similar relations for u2, a,, ul, (3), u2, (,), a,, (3). The second-order finite-difference 
scheme satisfying (4.8) and (4.9) and giving the convective term a t  the points 

+f(l- $ 9  m, n)l 

(1 ,  m, n) is 

(4.12) 

while the fourth-order scheme is 

Here the difference operators 4, Sj(,, are defined by 

(4.14) 
1 
h 

1 
3h 

Slf(l, m, n) = - [ fU+  8,  m, n)  - f ( l -  8 ,  m, n)l 
and 

(4.15) 

with similar relations for the S,, S,, S22(3), S3(3). The eddy viscosity is defined at the 
points (1, m, n )  ; the scheme giving the subgrid terms a t  ( I ,  m, n) is 

4 ( 3 ) f V ,  m, n )  = - $ 9  m, n )  -fQ- $ 3  m, n)l 

(4.16) 

The second-order central-difference scheme is used for the term a28/8x5, as well as 
for the Leonard term. 

The initial velocity field ui(x) is derived from a random Gaussian field with zero 
mean, obeying the continuity condition aiii/axi = 0; any prescribed three-dimensional 

3-2 
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spectrum can be imposed. The random, Gaussian initial temperature field is formed in 
the same way. 

5. Results and discussion 
5.1. Model parameters : simulation of the Yeh & Van Atta experiment 

There are two model parameters to be determined, C, and C,. Ctc is known to depend 
on a subgrid-scale Reynolds number R,,, (McMillan & Ferziger 1979; Ferziger & 
Leslie 1979). At low RSGS it can be determined without recourse to  experiment, by 
reference to fields generated by direct simulation of homogeneous isotropic turbulence 
as the 'original fields' to be simulated (McMillan & Ferziger 1979). Alternatively it 
can be determined by fixing Cu to match the simulated kinetic energy decay with 
that of a particular experiment (Kwak et al. 1975). Values of Cu obtained by the two 
methods using the prefiltering approach were found to be in good agreement with 
each other but in fair agreement only with theoretical predictions (Ferziger & Leslie 
1979). Simulation of the velocity fields of the Comte-Bellot & Corrsin (1971) and the 
Yeh & Van Atta (1973) experiments using the volume balance procedure by 
Antonopoulos-Domis (1979) gave values of Cu in excellent agreement with the 
theoretical predictions of Lilly (1966). 

Similarly the model parameter C, can be determined by either of the two methods. 
Here it is determined by matching to the ( d 2 )  decay of the Yeh & Van Atta (1973) 
experiment; the advantage is in the confidence inherent in the experimental match- 
ing, the disadvantage in the possible restriction of the C, so determined to  the neigh- 
bourhood a t  the Reynolds and Prandtl numbers of the experiment. I n  the latter 
the (passive) temperature fluctuations were generated by heating the turbulence- 
producing grid and the characteristic parameters were : 

grid spacing, M = 40 mm; 

free-stream air speed, U, = 4.06 m s-I; 

temperature intensity a t  xlm = 35, (P)  = 0.2776 "C; 

Taylor velocity microscale a t  x / m  = 35, 

Kolmogorov velocity microscale, 7, = (v3/e)f = 0.534 mm; 

Kolmogorov temperature microscale, 

From (5.1) it is evident that  the three-dimensional filtered spectra B(k)  can be 
obtained from the raw experimental as 

A, = 6.25 mm, R, = u1 h,lv = 35.2; 

7, = (vg/e)$ = 0.679 mm. 

where the transform G ( k )  of the Gaussian filter (3.5) is 

G ( k )  = exp ( - kzAi/24) (5.2) 

while the transform of the top-hat filter is 

( 5 . 3 )  

(5.4) 
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FIGURE 3. Sensitivity of (a2)  decay on Ce. 0, Ce = 1.5; X ,  Ce = 2.0; V , Ce = 2.5. 

It can readily be seen from (3.7) that the filter inherent in the volume balance pro- 
cedure is the top-hat (5.3) with AA = h. It should also be noted that, up to the maxi- 
mum wave number (k,,, = n,/3/h) that can be resolved, the filtering effects of (5.3) 
and (5.5) are almost identical; therefore their difference is, for all practical purposes, 
conceptual rather than real (Antonopoulos-Domis 1979). 

The filtered kinetic energy 4&iit) and the temperature variance (a2) at various 
stations x / M  are obtained from the experimental three-dimensional spectra: 

I n  view of the finding for the velocity field (see $3)  the velocity Leonard term was 
switched ‘off’ (FLU = 0 in (3.24)) for all the runs of the present study. 

The contribution of the molecular viscosity term to the total energy dissipation is 
small for coarse meshes, but it becomes non-negligible as h is made smaller; switching 
off this term affects the value of Cu (Antonopoulos-Domis 1979). For the coarse 
meshes to  which we are a t  present limited, this effect can be neglected and the 
difference lumped into the subgrid term. This was done for the runs reported in this 
section; the effect of doing so is discussed in $3.2. 

The three-dimensional filtered experimental spectra a t  station x / M  = 25 were 
imposed on the initial fields of both velocity and temperature. A small mesh size h is 
desirable for capturing as much as possible of the high wavenumber part of the 
spectrum (k,,, = 7743/h). On the other hand, h must be large enough to include the 
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FIGURE 4. Three-dimensional velocity spectra, 163 runs, h = 1.5 cm. No Leonard term, -, 
filtered experimental ( X / M  = 46.6); x x x , simulation. 

important part of the large scales (kmi,, = n2/3/hN, N = number of grid points in 
any one direction). For the simulation of the present experiment it was chosen to be 

h = 15 mm for 163 runs, 

h = 10 mm for 323 runs. 

The value of Cu matching the experimental (Us) decay was found to be the same 
as that for the Comte-Bellot & Corrsin (1971) experiment in which Re, = 71.6, 
namely 

CU = 0.23. (5.7) 

In  figure 2 (a )  the simulated and filtered experimental decay of (Us) are compared 
for the 163 runs; the same comparison for the 323 grid-box runs is given in figure 2 (b ) .  
It will be noted that Cu is independent of the size of the mesh spacing for Fu = 0. 
For the coarse meshes to which we are limited, the dissipation of (a2) by the thermal 
diffusivity term at scales larger than h is a small fraction of the total drain of (a2) to 
the subgrid scales. For the runs of this section this term was switched off (Fe = 0)) 
which is equivalent to lumping the difference into the subgrid term; its effect is 
investigated in the next section. The temperature Leonard term was also switched 
off (FLe = 0 )  and the value of Ce matching the filtered experimental decay of (a2) 
was found (figures 2a, b )  to be 

Ce = 2.0. (5 .8 )  
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1 10 
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FIGURE 5 .  Three-dimensional temperature spectra, 163 runs, h = 1.5cm. NO Leonard term, 
C, = 2.0, X I M  = 46.5. --, filtered experimental; x x x , simulation. 

It may be shown by an easy extension of Lilly's analysis that, if there is a well- 
developed inertial range, 

where KO is the Kolmogorov constant and Ba is the corresponding constant for the 
scalar field, defined by 

EsCalar(JC) = Ba X E - % ~ - %  (5.10) 

x being the scalar and E the kinetic energy dissipation rates respectively. A literature 
search by Quarini (1977) shows that experimental values for KO agree quite well 
(KO N 1.5). The majority of the experimental values for Ba agree quite well, giving a 
mean Ba Y 0.63, with the exception of two experiments where Ba is reported t o  be 
two to three times larger; including the latter an arithmetic mean of Ba 2: 0.83 is 
obtained. Thus equation (5.9) would give C, = 1.8 to 2.38 which is in good agreement 
with (5.8), considering the scatter of the Ba values. I n  figure 3, the sensitivity of the 
simulated decay of (G2) to C, is shown. 

The three-dimensional spectra of velocity and temperature fluctuations for 1 63 runs 
and 323 runs are shown in figures 4-7. The agreement with the filtered experimental 
spectra ranges from good to excellent, and this shows that: 

(a) The LES code TEMTY is capable of predicting the evolution of the vector and 
scalar field statistics. 

C, = (Ko/Ba),  (5.9) 
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FIGURE F. Three-dimensional velocity spectra, 323 runs, h = 1 em. No Leonard term, C ,  = 0.23, 
X I M  = 46.5. --, filtered experimental; x x x , simulation. 

( 6 )  The Leonard term, hence prefiltering of the scalar equations, is not necessary, 
a t  least for a staggered grid; this conclusion is consistent with the findings for the 
velocity field. I ts  significance is that scales down to the mesh spacing h can be resolved 
for both the velocity and the scalar fields. 

(c) The subgrid scale term (3.13) is successfully modelled by the eddy diffusivity 
model (3.22) in the case of isotropic flows. 

( d )  The spectral agreement between simulation and experiment €or both 163 and 
323 runs confirms that the model parameter C, is independent of the mesh size, if the 
effects of viscosity and diffusivity are lumped into the respective subgrid terms. 

5.2. Role of each term of the scalar equation - preJiltering 

To investigate the role of each term in the temperature equation 163 runs ( h  = 1-5 cm) 
were used and the velocity Leonard term was switched off (FLU = 0). The initial 
fields were those of the Yeh & Van Atta experiment. 

First the thermal diffusivity and the temperature Leonard terms were switched off 
(FLo = F, = 0) in (3 .25 )  and the model parameter C ,  was set equal to 0. We were 
then following the evolution of a which obeys 

(5.11) 

and this is a direct simulation without subgrid drain. The spectral results are shown 
in figure 8. 
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FIGURE 7. Three-dimensional temperature spectra, 323 runs, h = 1 cm. No Leonard terms, 
C ,  = 2.0, X / M  = 46.5. -, filtered experiment,al; x x x , simulation. 

The variance (g2) was constant, for all time steps (since the numerical scheme for 
a(Biij)/axj is conserving (El2) and the effect of the convective term was, as it should be, 
to transfer (82)  from low wavenumbers to high ones, with a sharp cut-off at  the 
maximum resolvable k. Comparing figure 8 with figure 5, it is clear that the subgrid 
term is dissipating (a2) mainly from the high wavenumber part of the resolved scales 
to the unresolved scales, which is exactly what it is meant to do. 

The calculation was then repeated with exactly the same initial conditions and the 
Leonard term included (FLo = l) ,  AA = h and C,  = 0;  we were then following the 
evolution of a 0 satisfying 

a8 a - h2 
-+-eiij+-v28iij at axj 24 = 0. (5.12) 

It was found that the Leonard term contribution to the transfer of ( B 2 )  to subgrid 
scales was negligible; this result, consistent with the findings for the velocity field, 
does not verify Leonard’s (1974) predictions of the role of ‘his’ term. The spectral 
results are shown in figure 9; subtracting the spectral values of the field satisfying 
(5.12) from those of the (5.13) field (both a t  the 32nd time step), weget the effect of the 



Large-eddy simulation for a passive scalar in tzrrbiilence 69 

Initial field ( X / M  = 2 5 )  L - -  

0.1 1 10 

k (cm-')  
FIGURE 8. Role of convective term, 163 runs, h = 1.5 cm. Leonard, subgrid snd diffusivity 
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FIGURE 9. Role of Leonard term, 163 run, A A  = h = 1.5 cm. Results at  32nd time step: x , 
Leonard terms not included; V , Leonard term included in temperature field but not in velocity 
field, --, Leonard term effect (subtracting x from V). 
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FIGURE 10. Integral scales of velocity L, and temperature z,. - , filtered experimental. 

Simulation: x x ,  L,; 0 0, Lo. 

Leonard term. It can be seen that this term, instead of draining (82) to the SGS, is 
backscattering ( B 2 )  from the high resolved wavenumbers to the small ones, which is 
again consistent with the findings for the velocity field. 

Finally the thermal diffusivity term effect is investigated: all terms in (3.24), 
(3.25) were included, apart from the two Leonard terms (FLU = F', = 0). When the 
molecular viscosity term in (3.24) is included, the effects of the latter are no longer 
lumped into the subgrid term and a reduction in Cu is necessary (Cu = 0.22 in this 
case) to match the kinetic energy decay. Including both, viscosity and thermal 
diffusivity terms, the value of the parameter C, matching the filtered experimental 
decay of (82) was found to be exactly the same, C, = 2.0. The destruction X,,, of 
(82) by thermal diffusivity within the resolved scales for a 163 run with h = 15 mm 
was found to be 

x,,, 2: 670, (5.13) 
Xtota1 

where Xtotal includes both the drain of (82) to subgrid scales and destruction by 
diffusivity. The ratio Xres/Xtotal depends on the ratio y,/h (7, being the Kolniogorov 
microscale for the temperature field) and it was found approximately the same as the 
corresponding ratio for the velocity field. This is to  be expected for P, 2: 1. The 
dissipation range spectrum proposed by Pao (1965) gives 

X 
k = 1 -exp{ - 1.5Ba(kv0)4), 
x to ta l  

(5.14) 
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FIGURE 11. Evolution of Taylor microscales. Simulation ( M  = 4 cm). 

where X, is the destruction of (P)  below wavenumber k .  Leslie & Quarini (1979) 
show that a finite-difference scheme on a mesh of width h is equivalent to a sharp cut 
a t  wavenumber 2-957/h. Thus Pao’s spectrum gives 

= 1 - exp { - 6-366Ba (y,/h).$). 
Xtotal 

For the present experiment this gives 

6.4% for B a  = 0.63, 
- N  

8-1 % for B a  = 0.83. 

(5.15) 

(5.16) 

5.3. Dependence of temperature decay on length scales 

The filtered integral scales, zu for velocity and z, for temperature, were computed as 

and the filtered Taylor microscales as 

(5.17) 

(5.18) 

(5.19) 

(5.20) 
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Initial 

Temperature 
spectrum no. 

Run no. (figures 1 2 ~  b )  k e f k , ,  4J A0 m r = mfm 

1 0.33 0.697 0.93 1.05 
Y 0.66 0.74 1.14 1.29 

0, 1 
0 , 2  
0 , 3  3 1.0 0.763 1.25 1.41 
0,4 4 1.33 0.80 1.42 1.61 
0, 5 5 1.0 0,77 1.38 1.55 

TABLE 1.  163 (h = 15 mm) runs with the same initial velocity spectrum (the filtered Yeh & 
Van Att>a spectrum at) .z/M = 25) and different initial temperature spectra. 

9 

0.1 0.2 0.3 0.4 1 .o 2.0 3.0 4.0 

k (cm-9  
FICIURE 12(a). For legend see next page. 

Clearly, the scales of the filtered fields must be larger than those of the raw ones. 
In  figure 10 the integral scales obtained from the simulation are compared with the 
filtered experimental ones; the agreement is excellent, as would be expected from the 
good agreement on spectra. The evolution of the Taylor microscales is not presented 
in the Yeh & Van Atts  paper; those obtained from the simulation are presented in 
figure 1 1 .  
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FIGURE 12. (a)  Shapes of initial three-dimensional temperature spectra used to investigate the 
dependence of r = m/m. 163 runs, vertical scale arbitrary. For all initial spectra JEo(k)dk 
= const. ( b )  Shapes of initial temperature spectra (3) and (5) both peaking at K O  = 0.78 cm-l. 
For both JE&) dk = const. 

Having established the validity of TEMTY in predicting the statistics of the 
velocity and temperature fields, the dependence of r = mln on scales was then in- 
vestigated. Two sets of runs were carried out; for all of them (U:) and (02) of the initial 
velocity and temperature fields were those of the Yeh & Van Atta experiment a t  

In  the first set the initial velocity field three-dimensional spectrum was held con- 
stant and equal to that of the Yeh & Van Atta experiment at  xlM = 25, for all runs. 
A different initial temperature spectrum shape was imposed on each of the five runs. 
Note that all spectra have, a t  high wavenumbers, the shape of the Yeh & Van Atta 
filtered spectrum, i.e. a well-developed inertial-convective range. These are referred 
to as run numbers 0, 0 to 0, 5 ;  initial data and results are summarized in table 1 and the 
initial spectral shapes are shown in figure 12. 

The values of r so obtained are plotted in figure 13 as a function of k,, the wave- 
number a t  which the initial temperature spectrum peaks. Since n and the initial le,, 
the wavenumber a t  which the velocity spectrum peaks, were here constant, this 
graph may also be viewed as one of m, r versus k,lk,. 

x ~ M  = 25. 
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FIGURE 13. r = m/n ver.sus initial k,; runs (0, 0) to (0, 5). Initial velocity spectrum was the same 
for all these runs (iG3), that of the Yell & Van Atta experiment a t  S / M  = 25. 

FIGURE 14. r = m/m versus initial hu/ho runs (0, 0) to (0, 5). Initial velocity spectrum for all 
these runs ( 163) that of the Yeh & Van Atta experiment. 
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vertical scale arbitrary. For all initial spectra, JE,(k)dk = const. 

r 

Initial 
h 

\ 

Velocity Temperature 
spectrum no. spectrum no. 

(figure 13) (figure 12) k d k l  Adhe r = m/n 

1 0 2.0 0.83 1.66 
2 0 1.0 0.75 1.28 
3 0 0.5 0.73 1.14 
1 1 1 .0 0.81 1.51 
1 3 3.0 0.89 2.01 
1 4 4.0 0.93 2.20 
2 1 0.5 0.73 1.17 
2 3 1.5 0.80 1.57 
2 4 2.0 0.84 1.79 
3 1 0.25 0.71 1.03 
3 3 0.75 0.78 1.39 
3 4 1.0 0.82 1.59 

TABLE 2. 163 (h = 15 mm) runs with different initial velocity and temperature spectra. 
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FIGURE 16. r = m/n versus kolk,, for different initial velocity and temperature spectra, 163 runs. 

It can be seen that the results of runs 0,O to  0,4 fall on a straight line in agreement 
with the Warhaft & Lumley (1978) experiment and tthe Test Field Model results of 
Herring & Newman (1979). In  fact the set of runs 0,O to 0,4 is the numerical equivalent 
of the Warhaft & Lumley experiment. 

However, run 0,5 gives a value of r falling well outside this line; if r was a linear 
function of k, (or k,/k,) the results of runs 0 , 3  and 0 , 5  should be identical since they 
both have the same k, value. It is seen on figure 12(b)  that the difference between 
their initial temperature spectra is a t  small k’s. Although TEMTY reproduces the 
Warhaft & Lumley experiment i t  is already clear that m, r are not linear functions of 
k,/lc,. On the other hand when m, r are plotted versus the initial h,/h, (figure 14) all 
points fall on a straight line. 

The purpose of the second set of runs was to examine the consequences of varying 
the initial spectra of the velocity field as well as that  of the temperature field. The 
initial temperature spectra were those of the previous set (figure 12) while the shapes 
of the initial velocity spectra are shown in figure 15: note that all of these have the 
same form at  high k’s .  A number of combinations of velocity and temperature spectra 
were used; the input data and results are summarized in table 2. Anyone run is 
referred to as run number 1, p ,  where 1 indicates initial elocity spectrum number 
and p temperature spectrum number. 

The results are plotted in figures 16 and 17 .  It is clear from figure 16 that r is not 
a linear function of k, /k , ;  note though that the r’s of runs having either the same first 
or the second index (i.e. either the same initial velocity or the same initial temperature 
spectrum) tend to  fall on a straight line. On the other hand the results of all runs 
fall nicely on the same straight line when plotted against h,/h, (figure 17)  .The spectra 
of all these runs have the same shape at  high wavenumbers. 
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FIGURE 17 .  r = m/n versus initial A,/A, for different initial velocity and 
temperature spectra, 163 runs. 

We may conclude that the ratio r of the exponents m, n in the decay of the scalar- 
vector intensities cannot be parametrized by the ratio k,lk, .  If there is a well-developed 
inertial-convective range r is almost perfectly parametrized by the ratio of the length 
scales h,,/h,. 

6. Conclusions 
A LES code (TEMTY) has been developed to calculate the passive scalar in homo- 

geneous isotropic turbulence. The feasibility of LES and the validity of TEMTY has 
been proven by successful simulation of the Yeh 8: Van Atta experiment and by the 
reproduction of the trend observed in the Warhaft & Lumley experiment for the 
ratio r = m/n. The eddy diffusivity subgrid model was found to model correctly the 
drain of (g2) to the SGS in the case of isotropic turbulence examined here; the model 
parameter C, was found to be in reasonable agreement with theoretical prediction. 
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The role of each term in the scalar equation has been investigated; it was shown 
that, a t  least for staggered grids, the Leonard term (with its implication of prefiltering) 
of the scalar equations is not necessary and is, indeed, actively harmful; this term, 
instead of draining (g2) to the SGS, backscatters ( G 2 )  from the resolved small scales 
to the larger ones. 

The ratio r = m/n cannot be parametrized by E,lku; provided there is a well- 
developed inertial-convective range, an almost perfect linear relationship between 
r and h,lh, was found. 

These findings would be rather difficult, expensive and time consuming to arrive 
at  by physical experiments. On the other hand, once the LES code was proven, it was 
rather inexpensive to change the input parameters a t  will; this is a clear demonstra- 
tion of the versatility of LES and its potential in assisting physical understanding, 
until larger computers make possible the direct application of LES to engineering 
design problems. 

The code TEMTY is an extension of the isotropic velocity field code FORTY, 
which was developed and tested by Dr M. D. Love, Dr S. T. B. Young and the 
presenb author, of the Turbulence Unit, Nuclear Engineering Department, Queen 
MargrCollege. The author is grateful to  Dr Lave and Dr Young and to Professors 
J. H. Ferziger and D. C. Leslie for many helpful discussions. 

Turbulence research in the Department of Nuclear Engineering at Queen Mary 
College is supported by SRC. 
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